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NOMENCLATURE 

outside area of cloud; 
hydraulic diameter of cloud (4li,/A,); 
particle diameter; 
extinction coefficient, or projected particle area 
per unit volume (nnD$4); 
mean beam length as defined by equation (9); 
mean beam length from particle to cloud 
boundary; 
particle density; 
radiant heat transfer to each particle; 
radiant heat transfer to whole cloud: 
ratio between successive absorptions; 
view factor between particle and surroundings; 
temperature of particles; 
temperature of surroundings; 
volume of cloud; 
distance between two points on cloud boundary. 

Greek symbols 

%. absorptivity of cloud; 

r&J. absorptivity of particle; 
c. StefanBoltzmann constant, 

INTRODLCTION 

THE PROBLEM of radiant heat transfer to clouds of droplets 
or particles is important in such equipment as combustion 
chambers and spray dryers. When the perimeter of the 
particles is large compared with the wavelength, the cloud 
absorptivity. 2,. is given by [I] 

r,= 1 -exp(-KL) (1) 

where K is the projected area of the particles in unit volume 
of space, and L is the mean beam length. When the particles 
are grey, only a fraction rP of the intercepted light is 
absorbed. and the formula normally used to date is [l] 

r, = 1 -exp( -r,KL). (2) 

Equation (2) is inaccurate as it assumes that non-absorbed 
radiation continues to travel in the same direction after 
impinging on the particle. In the following, an attempt will 
be made to account more accurately for the effect of multiple 
reflections in a dilute cloud of isotropically reflecting 
particles. 

FORMl LA FOR CLOl D ALSORPTIVIT1 

Consider a beam of light of unit intensity falling on a 
cloud. It can readily be shown that a fraction { 1 -exp( - KL)j 
of the light is intercepted by the particles. Of this intercepted 
light, a fraction rP is absorbed and (1 -z,,) is reflected. 

First absorption = ( 1 -exp( - KL): rp (3) 

First reflection = (1 -exp(-KL): (1 -a,,). (4) 

The light from the first reflection travels another mean 
beam length L’ (L # L) before reaching the cloud boundary. 

Along similar hnes of reasoning, it can be seen that 

Second-time intercepted radiation 
= First reflection x (I - exp( - KL’)) 
= {I-exp(-KL))(l-z,){l-exp(-KL)j 

Second absorption 
= Second-time intercepted radiation x up 
= (I-exp(-KL)J(l-cl,)jl-exp(-KL)jr,. (5) 

Assuming that L’ remains constant for the third. fourth 
reflections and interceptions, it can be seen that the ratio r 
between successive absorptions is. from equations (3) and (5): 

r=(l--r&/l-exp(-KL);. (6) 

To find the total absorption and hence the cloud 
absorptivity rc. we sum up the successive absorptions: 

2, = total absorption 
T 

= first absorption x 1 r’ 
,=o 

‘cQ,{ I -exp( - KL)j 

= l-(l-rp)[l-exp(-KL’)~~ 
(7) 

Assuming that the mean beam length from boundary to 
boundary L is twice the mean beam length from particle 
to boundary L [as will be seen later. this assumption is 
required for the consistency of equation (7) at low KL], 
we finally obtain: 

zp ( 1 -exp( - KL)) 

6 I-(I-rp)[l-expl-KL.2))’ 
(8) 

C4LCULATION OF THE MEAN BUM LENGTH 

The mean beam length L IS defined by [2.3] 

exp( - KL) 

= 12- exp( - Kx) x (view angle factor) r d(so!idyngle) (9) 

jz_ (view angle factor) x d(sohd angle) 

Hottel [2] showed that for this equation to hold within 
a few per cent, it is sufficient to take 

L = 0.9D,, (10) 

where D,, is the hydraulic diameter of the cloud. 
For a more accurate calculation of L, expression (9) has 

to be evaluated, usually by numerical methods. The only 
case in which it can be solved analytically is that of a 
spherical cloud. for which [3]: 

KL= -In 9(K8~~l-(l+~KD,Jexp(-~KD,,)~ 
1 I 

(11) 
h 

However. a numerical integration of equation (9) shows 
that for spheres and infinite cylinders KL varies with KD,, 
in almost exactly the same way (Table I). Hence equation 
( I 1) can be used for clouds of intermediate geometries and 
is to be preferred to equation (10) as the latter was derived 
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Table I, Mean beam lengths of sphere and 
infinite cylinder\ 

KDI, KL (sphere) K 1, ( I cylinder-a) 

0.2 0.198 0.195 

1.0 0.93 0.9 I 
3.0 2.4 2.i 
5.0 3.4 3.4 

10.0 4.7 -1.x 
100.0 9.3 O.-I 

primarily for volumes of absorbing gas. where multiple 
reflections are not present. Note that L tends to Dh as KL 
tends to 0. a fact which equation (IO) fail+ to take into 
account. 

RADIAhT HEAT TRANSFER ‘ID ,NDt\ IDL A,. P,4RTI(‘l,k_S 

As a test of the validity of equation (8). we consider the 
case of a cloud of uniform-sized spherical particles at uniform 
temperature in black surroundings. The total heat-transfer 
rate Q from the surroundings to the cloud is given by 

Q = rrr,A,(T:$ 7iA) (12) 

while the mean heat-transfer rate to each of the t$n particles 
in the cloud is given by 

q = ;,, = mD&,S(T:-7;) (13) 

where S is a shape factor accounting for shielding effects 
(where particles hide each other from the radiation) and 
multiple reflection effects. A comparison of equations (I 2) 
and (13) gives 

For very dilute cloud, KDh --) 0, KL + KDh [from equa- 
tion (ll)], rc + r,KDh [from equation (8)], and S + 1 
[equation (14)], as expected. Exactly the same result holds 
when G(~ + 0, which means that if the particles are highly 
reflecting. the multiple reflections compensate for the shield- 
ing effect. 

Table 2. Comparison of present and previous methods 

KD,, s 1; 
(present tnethod) (previous method) 

0. I I 0.9 I 0.86 
2 0.85 0,s 
5 0 72 0.72 

10 0.53 0.59 

0.5 I 0.71 0.72 
2 0.58 0.59 
5 0.33 0.36 

0.X I 0.65 0.61 
2 0.46 0.48 
5 0.23 0.24 

Table 2 gives some values of S as calculated by the 
present method [equations (8),( I 1) and (14)], and by previous 
methods [equations (2). (10) and (14)]. As expected, the two 
methods give divergent results for low particle absorp- 
tivities rp. As the previous method ignores multiple re- 
Rections, it predicts low values for S in moderately dense 
clouds (KDh < 5), but a high value for S in very dense 
clouds (KD,, > 5). when a large part of the incident radiation 
is “bounced elf” the cloud at the boundary. It can also be 
seen that in the previous method S depends only on the 
product r,KDh, while in the present method it is a function 
of both rp and KDh in different manners. 

The present method is limited by the assumption that 
L’ remains the same for successive reflections, and is equal 
to L,!2. Strictly speaking. this holds only when reflection is 
isotropic and when the cloud is dilute. However, for moder- 
ately dense cloud it is expected that the present method 
would be more reliable than previous methods. For very 
dense clouds, the limiting absorptivity can be calculated 
from xp in a different manner [I]. 
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